Thermal properties, degradation and stability of poly(vinyl chloride) predegraded thermooxidatively in the presence of dioctyl phthalate plasticizer

نویسنده

  • Györgyi Szarka
چکیده

Thermooxidative degradation of poly(vinyl chloride) (PVC) is inevitable during processing of PVC. Recycling of this polymer requires reprocessing in most of the cases, and due to the low thermal stability of PVC, it is of paramount importance to reveal the effect of thermooxidation on the thermal stability of this commercially important polymer. However, detailed systematic investigations are lacking on this crucial problem. In this study, the thermal behavior of PVCs thermooxidized in dilute dioctyl phthalate (DOP) (di(2-ethylhexyl) phthalate, DEHP) plasticizer was investigated by DSC, thermal gravimetry and isothermal degradation under inert atmosphere. It was found that thermooxidation leads to PVCs with certain extent of internal plasticization by DOP chemically bound to the PVC chains and by the oxidized chain segments as well. Thermogravimetry and isothermal dehydrochlorination under inert atmosphere revealed that even low extent of thermooxidation of PVC (0.4 mol% of HCl loss in 30 minutes at 200 °C) leads to dramatically decreased thermal stability of this polymer with 50-60 oC lower onset decomposition temperature than that of the virgin resin. This unexpected finding means that at least part of the oxidized moieties formed during oxidation of the PVC chains acts as initiators for thermal dehydrochlorination at relatively low temperatures, resulting in significant decrease of the thermal stability of the polymer. These striking results also indicate that the decreased thermal stability caused by thermooxidation in the course of the primary processing of this polymer should be taken into account in order to efficiently stabilize PVC products for reprocessing and recycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of some additives on degradation of poly (vinyl chloride- co- vinyl

The thermal decomposition of 86 % vinyl chloride 14 % vinyl acetate copolymer wasstudied by the conductometry technique in the presence of nitrogen. The kinetics of stability andthermal degradation of vinyl chloride- co- vinyl acetate (PVC- co- PVAc) copolymer withcopper, copper oxide and tricalcium dicitrate (st) were investigated at various temperatures (150-180 oC ) in solution. The rate coe...

متن کامل

Aqueous leaching of di-2-ethylhexyl phthalate and "green" plasticizers from poly(vinyl chloride).

A method was developed to assess leaching of several poly(vinyl chloride) (PVC) plasticizers in aqueous media using gas chromatography (GC), and compared to a gravimetric standard test method (ASTM Method D1239). The GC method was a more direct measurement of plasticizer concentration in the aqueous phase. The leaching of commercial plasticizers, as well as several series of "green" candidate p...

متن کامل

The Plasticizing Mechanism and Effect of Aluminium Chloride and Glycerin on Poly(vinyl alcohol) Films

Poly(Vinyl Alcohol) (PVA) films were prepared with AlCl3·6H2O/glycerin and AlCl3·6H2O/poly glycerin as two kinds of complex plasticizer. The micromorphology of pure PVA film and PVA films plasticized with complex plasticizer was observed by Scanning Electron Microscope (SEM). The interaction between complex plas...

متن کامل

Role of Nano-Sized TiO2 on Mechanical and Thermal Behavior of Starch/Poly (vinyl alcohol) Blend Films

A novel Starch/Poly (vinyl alcohol)/nano-Titanium dioxide (ST/PVA/nano-TiO2) biodegradable nanocomposite film was prepared by homogeneously dispersed TiO2 nanoparticles in different ratios of starch/PVA-based materials, via a solution casting method. Glycerol was used as plasticizer. The mechanical and thermal properties of films were studied using tensile and perforation strength tests and the...

متن کامل

Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition

Plasticizers are commonly added to poly(vinyl chloride) (PVC) and other brittle polymers to improve their flexibility and processing properties. Phthalate plasticizers such as di(2-ethylhexyl phthalate) (DEHP) are the most common PVC plasticizers and have recently been linked to a wide range of developmental and reproductive toxicities in mammals. Our group has developed several replacement com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013